Atmospheric Oxidation Mechanism and Kinetic Studies for OH and NO3 Radical-Initiated Reaction of Methyl Methacrylate

نویسندگان

  • Rui Gao
  • Ledong Zhu
  • Qingzhu Zhang
  • Wenxing Wang
چکیده

The mechanism for OH and NO3 radical-initiated oxidation reactions of methyl methacrylate (MMA) was investigated by using density functional theory (DFT) molecular orbital theory. Geometrical parameters of the reactants, intermediates, transition states, and products were fully optimized at the B3LYP/6-31G(d,p) level. Detailed oxidation pathways were presented and discussed. The rate constants were deduced by the canonical variational transition-state (CVT) theory with the small-curvature tunneling (SCT) correction and the multichannel Rice-Ramspergere-Kassele-Marcus (RRKM) theory, based on the potential energy surface profiles over the general atmospheric temperature range of 180-370 K. The calculated results were in reasonable agreement with experimental measurement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetics and mechanistic studies of the atmospheric oxidation of alkynes.

Kinetics studies of the OH-initiated oxidation of 2-butyne, propyne, and acetylene were conducted at 100 Torr and 298 K using turbulent flow chemical ionization mass spectrometry. The major oxidation products were identified, and with the aid of supporting electronic structure thermodynamics calculations, a general OH-initiated oxidation mechanism for the alkynes is proposed. The major product ...

متن کامل

Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens.

The atmospheric chemistry of the 2- to 4-ring polycyclic aromatic hydrocarbons (PAH), which exist mainly in the gas phase in the atmosphere, is discussed. The dominant loss process for the gas-phase PAH is by reaction with the hydroxyl radical, resulting in calculated lifetimes in the atmosphere of generally less than one day. The hydroxyl (OH) radical-initiated reactions and nitrate (NO3) radi...

متن کامل

Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources.

Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predic...

متن کامل

Products of the Self-Reaction of HCO Radicals: Theoretical Kinetics Studies

The mechanism of the self-reaction of HCO radicals is investigated by using high-level quantum-chemical methods including M05-2X, CCSD, CCSD(T) and CRCC(2,3). Next, the rate coefficients for several product channels as a function of pressure and temperature are computed by employing statistical rate theories. Four important product channels are predicted to be CO + CO + H2, HCOH + OH, cis-(HCO)...

متن کامل

Heterogeneous Reactions of Particulate Matter-Bound PAHs and NPAHs with NO3/N2O5, OH Radicals, and O3 under Simulated Long-Range Atmospheric Transport Conditions: Reactivity and Mutagenicity

The heterogeneous reactions of ambient particulate matter (PM)-bound polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) with NO3/N2O5, OH radicals, and O3 were studied in a laboratory photochemical chamber. Ambient PM2.5 and PM10 samples were collected from Beijing, China, and Riverside, California, and exposed under simulated atmospheric long-range transport conditions for O3 and O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014